If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2-12t+7=0
a = 4; b = -12; c = +7;
Δ = b2-4ac
Δ = -122-4·4·7
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{2}}{2*4}=\frac{12-4\sqrt{2}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{2}}{2*4}=\frac{12+4\sqrt{2}}{8} $
| 18x²+33x-40=0 | | y/6-7=13 | | 296-285=x | | 15=12x+0.3 | | 3r+4=3(4+r) | | 3x-x+2=4(2x1) | | 3y=5=29 | | 296/285=x | | (2x+4)÷8=4x | | 3x+7+28=8x | | 3(4p+6)=2(6p+9) | | x+0.3=15 | | (-24)-y=1 | | 15x-2=20x-27 | | 0.50b-16=-4 | | 12x+3.6=15 | | |5x+3|=15 | | 20=-6x-9 | | 3x-31=(x+6)+(x+6) | | 10x-30+20=10 | | 12x+3.6=15x | | 4(-4-7x)=-44 | | 15x-2+20x-27=180 | | (6x+2)+(6x+2)=10x+13 | | 10x+30-20=10 | | 11+10x+11-33=x+2x+100 | | k^2+21k=72 | | 0=5x^2-22x+25 | | y+8/6=y/5 | | u/5+9=22 | | 18-4n=2+60 | | 5x+17=-103 |